MATH 10550, EXAM 1 SOLUTIONS

1. If f(2) = 5, f(3) = 2, f(4) = 5, g(2) = 6, g(3) = 2 and g(4) = 0, find $(f \cdot g)(2) + f(g(3))$. Solution. $(f \cdot g)(2) + f(g(3)) = f(2) \cdot g(2) + f(2) = 5 \cdot 6 + 5 = 35$.

2. Evaluate the following limit

$$\lim_{x \to 0} \frac{2 - \sqrt{4 - x^2}}{x^2}$$

Solution.

$$\lim_{x \to 0} \frac{2 - \sqrt{4 - x^2}}{x^2} = \lim_{x \to 0} \frac{2 - \sqrt{4 - x^2}}{x^2} \cdot \frac{2 + \sqrt{4 - x^2}}{2 + \sqrt{4 - x^2}} = \lim_{x \to 0} \frac{4 - (4 - x^2)}{x^2(2 + \sqrt{4 - x^2})}$$
$$= \lim_{x \to 0} \frac{1}{2 + \sqrt{4 - x^2}} = \frac{1}{4}.$$

3. For which value of the constant c is the function f(x) continuous on $(-\infty, \infty)$?

$$f(x) = \begin{cases} c^2 x - c & x \le 1\\ cx - x & x > 1. \end{cases}$$

Solution. The partial functions of f(x) are continuous for x < 1 and x > 1 because they are polynomials. To get f(x) continuous on $(-\infty, \infty)$ we need

$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{+}} f(x) = f(1).$$

This happens when $c^2 - c = c - 1$. Rearranging gives $0 = c^2 - 2c + 1 = (c - 1)^2$, and thus c = 1.

4. Compute

 $\lim_{x \to \pi/2+} \tan x.$

Solution. From the graph of $y = \tan x$, the limit is $-\infty$. Or, since $\tan x = \frac{\sin x}{\cos x}$ and $\sin(\pi/2) = 1$ and $\cos(\pi/2) = 0$, $\tan x$ has a vertical asymptote at $x = \pi/2$. Thus the limit is either ∞ or $-\infty$. For $\pi/2 < x < \pi$, we have $\sin x > 0$ and $\cos x < 0$. Thus for x near $\pi/2$ but greater than $\pi/2$, $\tan x < 0$. Therefore the answer must be $-\infty$.

REPORT

5. Since the function

$$f(x) = \frac{x^2 - 1}{x^3 - 4x}$$

is a rational function, it is continuous everywhere in its domain, which is everywhere that the denominator is nonzero. The denominator is zero at x = 0 and $x = \pm 2$.

6. If $f(x) = (x^2 + 3x)(6x^5 - 2x^8)$, compute f'(1). Solution. $f'(x) = (2x + 3)(6x^5 - 2x^8) + (x^2 + 3x)(30x^4 - 16x^7)$. $f'(1) = 5 \cdot 4 + 4 \cdot 14 = 76$.

7. For
$$f(x) = \sqrt[3]{x^5} + \frac{6}{\sqrt[5]{x^3}}$$
, find $f'(x)$.
Solution. Rewriting $f(x) = x^{\frac{5}{3}} + 6x^{-\frac{3}{5}}$, we have $f'(x) = \frac{5}{3}x^{\frac{2}{3}} + 6(-\frac{3}{5})x^{-\frac{8}{5}} = \frac{5\sqrt[3]{x^2}}{3} - \frac{18}{5\sqrt[5]{x^8}}$.

8. Find the equation of the tangent line to

$$y = \frac{7x - 3}{6x + 2}$$

at the point $(1, \frac{1}{2})$. Solution.

$$y' = \frac{7(6x+2) - 6(7x-3)}{(6x+2)^2} = \frac{32}{(6x+2)^2} = \frac{8}{(3x+1)^2}$$

Thus, $y'(1) = \frac{1}{2}$ which is the slope of the tangent line at $(1, \frac{1}{2})$. Thus $y = \frac{1}{2}(x-1) + \frac{1}{2} = \frac{1}{2}x$.

9. If $f(x) = x^2 \cos x$, find f''(x). Solution. Using Product Rule, we get

$$f'(x) = 2x \cos x - x^2 \sin x,$$

and $f''(x) = 2 \cos x - 2x \sin x - 2x \sin x - x^2 \cos x$
 $= 2 \cos x - 4x \sin x - x^2 \cos x.$

10. A ball is thrown straight upward from the ground with the initial velocity $v_0 = 96$ ft/s. Find the highest point reached by the ball. Hint: The height of the ball at time t is given by $y(t) = -16t^2 + 96t$. Solution. Velocity of the ball at time t is given by

 $\mathbf{2}$

REPORT

$$v(t) = y'(t) = -32t + 96.$$

The ball reaches the highest point when v(t) = 0, i.e. when t = 3 seconds. The height of the ball at 3 seconds is

$$y(3) = -16(3)^2 + 96(3) = -144 + 288$$
 ft. = 144 ft

11. Find the equation of the tangent line to the curve $y = \frac{x^3}{3} - x^2 + 1$ which is parallel to the line y + x = 4.

Solution. The line parallel to the line y + x = 4 will have the same slope, namely -1. So we need to find the point on the curve which has slope -1. $y' = x^2 - 2x$. We solve for x given y' = -1:

$$x^2 - 2x = -1 \Longrightarrow (x - 1)(x - 1) = 0 \Longrightarrow x = 1.$$

Plugging into the equation for the curve we see that y = 1/3 at this point. The tangent line at $(1, \frac{1}{3})$ is given by

$$y - \frac{1}{3} = -(x - 1),$$
 or $y = -x + \frac{4}{3}.$

12. Show that there are at least two roots of the equation

$$x^4 + 6x - 2 = 0.$$

Justify your answer and identify the theorem you use.

Solution. Let $f(x) = x^4 + 6x - 2$. Then f(-2) = 2, f(0) = -2 and f(1) = 5. Since f(x) is a polynomial, f is continuous on the real line. We have f(-2) > 0 > f(0). So, by the **Intermediate Value Theorem**, there exists a number c between -2 and 0 such that f(c) = 0. Similarly, there exists a number d between 0 and 1 such that f(d) = 0.

Note: The choices x = -2, 0, 1 are not the only possibilities.

13. Given

$$y = \frac{1}{x^2 + 1},$$

find y' using the **definition** of the derivative.

Solution.

Let
$$f(x) = \frac{1}{x^2 + 1}$$
.
Then $y' = f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$
 $= \lim_{h \to 0} \frac{\frac{1}{(x+h)^2 + 1} - \frac{1}{x^2 + 1}}{h}$
 $= \lim_{h \to 0} \frac{(x^2 + 1) - ((x+h)^2 + 1)}{((x+h)^2 + 1) \cdot (x^2 + 1)} \cdot \frac{1}{h}$
 $= \lim_{h \to 0} \frac{x^2 + A - x^2 - 2xh - h^2 - A}{h((x+h)^2 + 1)(x^2 + 1)}$
 $= \lim_{h \to 0} \frac{h(-2x - h)}{h((x+h)^2 + 1)(x^2 + 1)}$
 $= \lim_{h \to 0} \frac{-2x - h}{((x+h)^2 + 1)(x^2 + 1)}$
 $= \frac{-2x - 0}{((x+0)^2 + 1)(x^2 + 1)}$
 $= -\frac{2x}{(x^2 + 1)^2}.$

4