MATH 10550, EXAM 1 SOLUTIONS

1. If $f(2)=5, f(3)=2, f(4)=5, g(2)=6, g(3)=2$ and $g(4)=0$, find $(f \cdot g)(2)+f(g(3))$.
Solution. $(f \cdot g)(2)+f(g(3))=f(2) \cdot g(2)+f(2)=5 \cdot 6+5=35$.
2. Evaluate the following limit

$$
\lim _{x \rightarrow 0} \frac{2-\sqrt{4-x^{2}}}{x^{2}}
$$

Solution.

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{2-\sqrt{4-x^{2}}}{x^{2}} & =\lim _{x \rightarrow 0} \frac{2-\sqrt{4-x^{2}}}{x^{2}} \cdot \frac{2+\sqrt{4-x^{2}}}{2+\sqrt{4-x^{2}}}=\lim _{x \rightarrow 0} \frac{4-\left(4-x^{2}\right)}{x^{2}\left(2+\sqrt{4-x^{2}}\right)} \\
& =\lim _{x \rightarrow 0} \frac{1}{2+\sqrt{4-x^{2}}}=\frac{1}{4}
\end{aligned}
$$

3. For which value of the constant c is the function $f(x)$ continuous on $(-\infty, \infty)$?

$$
f(x)= \begin{cases}c^{2} x-c & x \leq 1 \\ c x-x & x>1\end{cases}
$$

Solution. The partial functions of $f(x)$ are continuous for $x<1$ and $x>1$ because they are polynomials. To get $f(x)$ continuous on $(-\infty, \infty)$ we need

$$
\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{+}} f(x)=f(1)
$$

This happens when $c^{2}-c=c-1$. Rearranging gives $0=c^{2}-2 c+1=$ $(c-1)^{2}$, and thus $c=1$.
4. Compute

$$
\lim _{x \rightarrow \pi / 2+} \tan x
$$

Solution. From the graph of $y=\tan x$, the limit is $-\infty$. Or, since $\tan x=\frac{\sin x}{\cos x}$ and $\sin (\pi / 2)=1$ and $\cos (\pi / 2)=0, \tan x$ has a vertical asymptote at $x=\pi / 2$. Thus the limit is either ∞ or $-\infty$. For $\pi / 2<$ $x<\pi$, we have $\sin x>0$ and $\cos x<0$. Thus for x near $\pi / 2$ but greater than $\pi / 2, \tan x<0$. Therefore the answer must be $-\infty$.
5. Since the function

$$
f(x)=\frac{x^{2}-1}{x^{3}-4 x}
$$

is a rational function, it is continuous everywhere in its domain, which is everywhere that the denominator is nonzero. The denominator is zero at $x=0$ and $x= \pm 2$.
6. If $f(x)=\left(x^{2}+3 x\right)\left(6 x^{5}-2 x^{8}\right)$, compute $f^{\prime}(1)$.

Solution. $f^{\prime}(x)=(2 x+3)\left(6 x^{5}-2 x^{8}\right)+\left(x^{2}+3 x\right)\left(30 x^{4}-16 x^{7}\right)$. $f^{\prime}(1)=5 \cdot 4+4 \cdot 14=76$.
7. For $f(x)=\sqrt[3]{x^{5}}+\frac{6}{\sqrt[5]{x^{3}}}$, find $f^{\prime}(x)$.

Solution. Rewriting $f(x)=x^{\frac{5}{3}}+6 x^{-\frac{3}{5}}$, we have $f^{\prime}(x)=\frac{5}{3} x^{\frac{2}{3}}+$ $6\left(-\frac{3}{5}\right) x^{-\frac{8}{5}}=\frac{5 \sqrt[3]{x^{2}}}{3}-\frac{18}{5 \sqrt[5]{x^{8}}}$.
8. Find the equation of the tangent line to

$$
y=\frac{7 x-3}{6 x+2}
$$

at the point $\left(1, \frac{1}{2}\right)$.

Solution.

$$
y^{\prime}=\frac{7(6 x+2)-6(7 x-3)}{(6 x+2)^{2}}=\frac{32}{(6 x+2)^{2}}=\frac{8}{(3 x+1)^{2}} .
$$

Thus, $y^{\prime}(1)=\frac{1}{2}$ which is the slope of the tangent line at $\left(1, \frac{1}{2}\right)$. Thus $y=\frac{1}{2}(x-1)+\frac{1}{2}=\frac{1}{2} x$.
9. If $f(x)=x^{2} \cos x$, find $f^{\prime \prime}(x)$.

Solution. Using Product Rule, we get

$$
\begin{aligned}
f^{\prime}(x) & =2 x \cos x-x^{2} \sin x \\
\text { and } \quad f^{\prime \prime}(x) & =2 \cos x-2 x \sin x-2 x \sin x-x^{2} \cos x \\
& =2 \cos x-4 x \sin x-x^{2} \cos x
\end{aligned}
$$

10. A ball is thrown straight upward from the ground with the initial velocity $v_{0}=96 \mathrm{ft} / \mathrm{s}$. Find the highest point reached by the ball. Hint: The height of the ball at time t is given by $y(t)=-16 t^{2}+96 t$.
Solution. Velocity of the ball at time t is given by

$$
v(t)=y^{\prime}(t)=-32 t+96
$$

The ball reaches the highest point when $v(t)=0$, i.e. when $t=3$ seconds. The height of the ball at 3 seconds is

$$
y(3)=-16(3)^{2}+96(3)=-144+288 \mathrm{ft} .=144 \mathrm{ft} .
$$

11. Find the equation of the tangent line to the curve $y=\frac{x^{3}}{3}-x^{2}+1$ which is parallel to the line $y+x=4$.

Solution. The line parallel to the line $y+x=4$ will have the same slope, namely -1 . So we need to find the point on the curve which has slope -1 . $y^{\prime}=x^{2}-2 x$. We solve for x given $y^{\prime}=-1$:

$$
x^{2}-2 x=-1 \Longrightarrow(x-1)(x-1)=0 \Longrightarrow x=1
$$

Plugging into the equation for the curve we see that $y=1 / 3$ at this point. The tangent line at $\left(1, \frac{1}{3}\right)$ is given by

$$
y-\frac{1}{3}=-(x-1), \quad \text { or } \quad y=-x+\frac{4}{3} .
$$

12. Show that there are at least two roots of the equation

$$
x^{4}+6 x-2=0 \text {. }
$$

Justify your answer and identify the theorem you use.
Solution. Let $f(x)=x^{4}+6 x-2$. Then $f(-2)=2, f(0)=-2$ and $f(1)=5$. Since $f(x)$ is a polynomial, f is continuous on the real line. We have $f(-2)>0>f(0)$. So, by the Intermediate Value Theorem, there exists a number c between -2 and 0 such that $f(c)=0$. Similarly, there exists a number d between 0 and 1 such that $f(d)=0$.

Note: The choices $x=-2,0,1$ are not the only possibilities.
13. Given

$$
y=\frac{1}{x^{2}+1},
$$

find y^{\prime} using the definition of the derivative.

Solution.

$$
\text { Let } \begin{aligned}
f(x) & =\frac{1}{x^{2}+1} . \\
y^{\prime}=f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\frac{1}{(x+h)^{2}+1}-\frac{1}{x^{2}+1}}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left(x^{2}+1\right)-\left((x+h)^{2}+1\right)}{\left((x+h)^{2}+1\right) \cdot\left(x^{2}+1\right)} \cdot \frac{1}{h} \\
& =\lim _{h \rightarrow 0} \frac{\not x^{2}+\not 1-\not x^{2}-2 x h-h^{2}-\nmid}{h\left((x+h)^{2}+1\right)\left(x^{2}+1\right)} \\
& =\lim _{h \rightarrow 0} \frac{\not h(-2 x-h)}{h\left((x+h)^{2}+1\right)\left(x^{2}+1\right)} \\
& =\lim _{h \rightarrow 0} \frac{-2 x-h}{\left((x+h)^{2}+1\right)\left(x^{2}+1\right)} \\
& =\frac{-2 x-0}{\left((x+0)^{2}+1\right)\left(x^{2}+1\right)} \\
& =-\frac{2 x}{\left(x^{2}+1\right)^{2}} .
\end{aligned}
$$

